6th International Workshop - Advances in Cleaner Production São Paulo - Brazil - 24th to 26th, May - 2017 Universidade Federal de Viçosa

PORTLAND CEMENT PRODUCTION WITH DREGS AND GRITS FROM KRAFT PULP MILLS INCORPORATION TO THE CLINKER

Authors: Caio Torres Cláudio Silva Leonardo Pedroti Wellington Fernandes Fabiane Ballotin

Academic Work

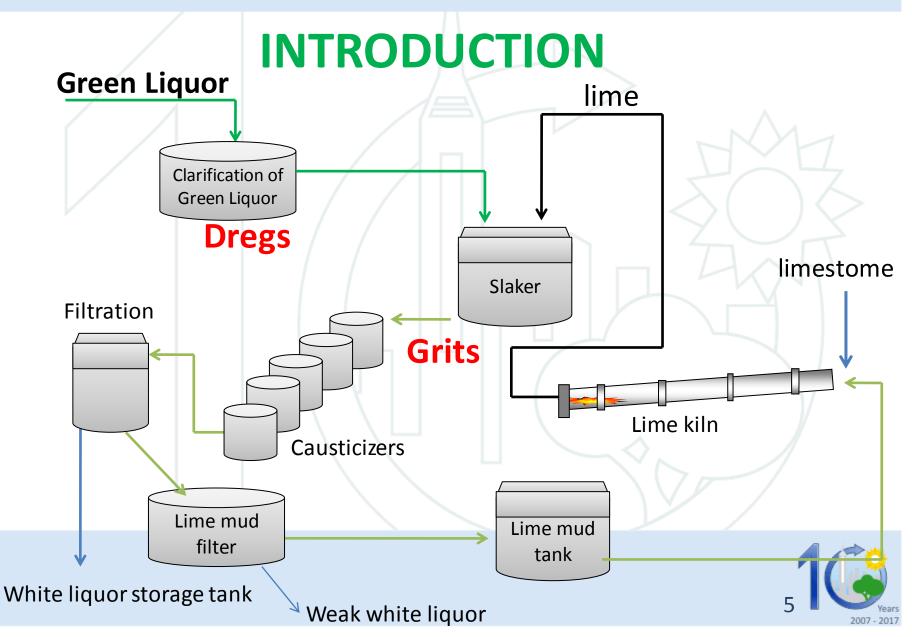
INTRODUCTION

It is estimated that in 2016 in Brazil were generated :

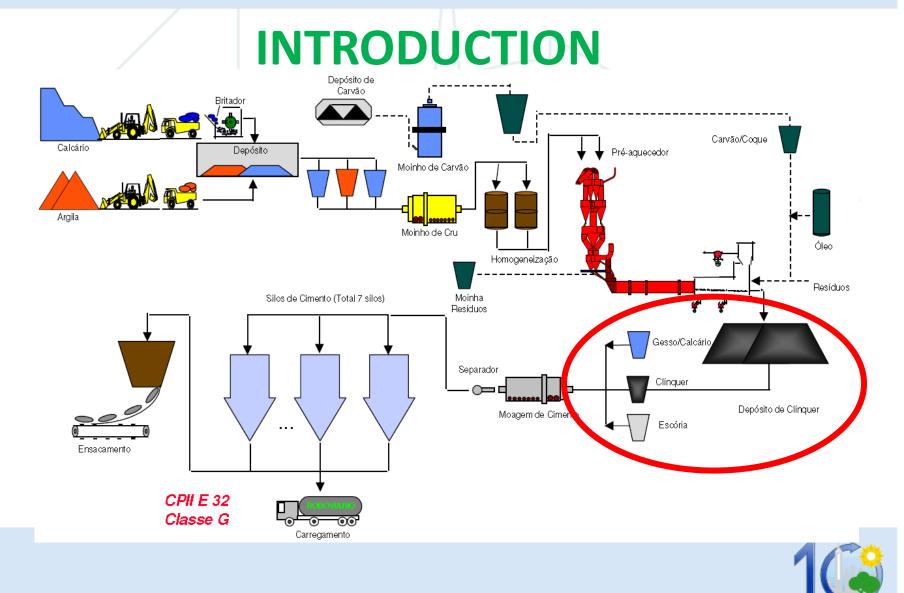
282,000 tons of Dregs
94,000 tons of Grits

INTRODUCTION

Dregs, originated from green liquor clarification are impurities originating mainly from carbon, hydroxides and metal sulfides with pH approximately 11 and generated of up to 15 kg.adt⁻¹ of pulp produced



INTRODUCTION


Grits, originated in the slakers are composed of unreacted lime with pH approximately 11 and generation of up to 5 kg.adt⁻¹ of pulp produced

2007 - 2017

Source: PUC-RIO

INTRODUCTION The Brazilian market has 8 cement options

The factors that differentiate the types of cement are the addition in the process of grinding different proportions of Clinker, calcium sulphates, carbonatic material and additions (slag, pozzolans and calcareous)

- Cimento Comum (CP I)
- Cimento Composto (CP II)
- Cimento de Alto-Forno (CP III)
- Cimento Pozolânico (CP IV)
- Cimento de Alta Resistência Inicial (CP V-ARI)
- Cimento Resistente a Sulfatos (RS)
- Cimento de Baixo Calor de Hidratação (BC)
- Cimento Portland Branco (CPB)

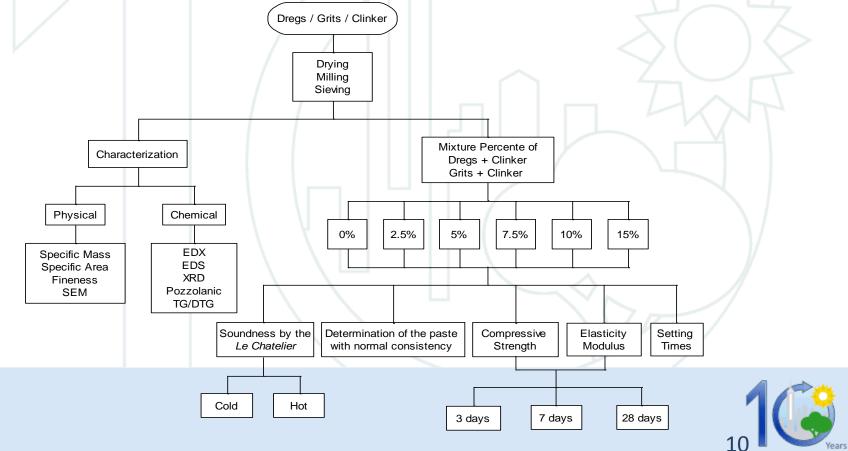
OBJECTIVES

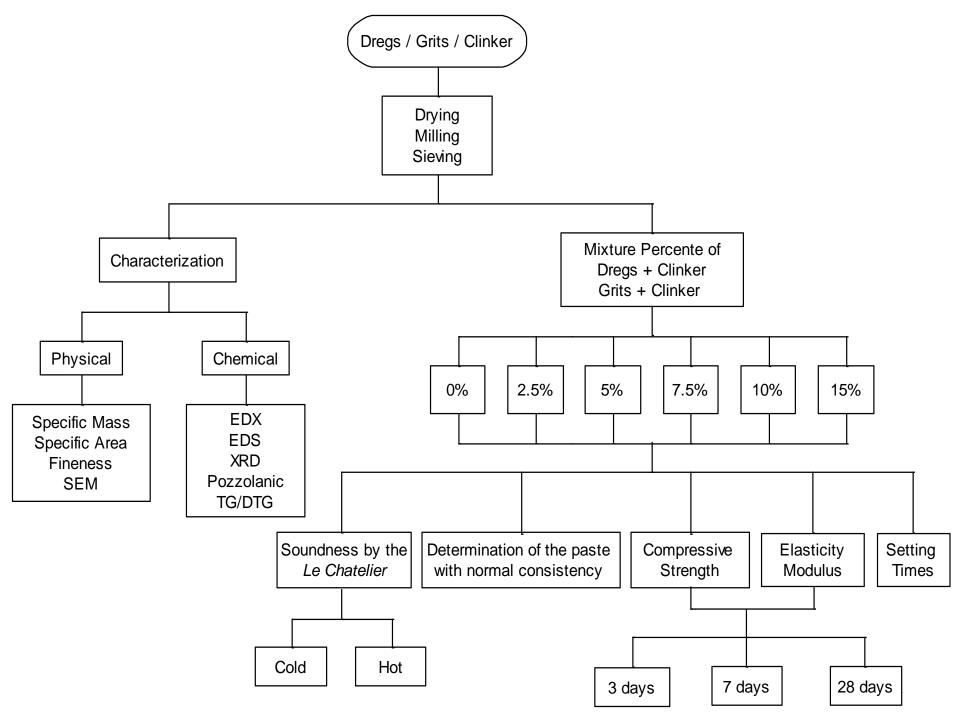
This paper proposes the incorporation, in different proportions (2.5; 5; 7.5; 10 and 15%), of alkaline solid wastes from pulp mills, namely **dregs** and **grits**, to clinker in the cement industry

MATERIAL AND METHODS

Dregs and grits were obtained from a Brazilian bleached kraft pulp mill

Clinker was obtained from a Brazilian cement


These materials were characterized in the laboratories of the Federal University of Vicosa – UFV and the Federal University of Minas Gerais – UFMG



007 - 2017

MATERIAL AND METHODS

The dregs and grits were submitted to an experimental path described by the flowchart

In the present research for each incorporation of dregs and grits (2.5; 5; 7.5; 10 e 15%) to the clinker

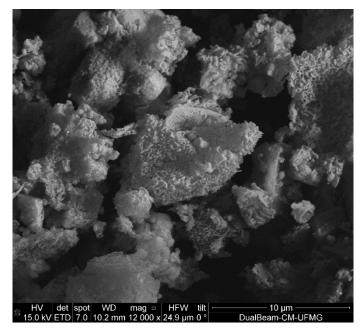
		Trac	ce (%)	Amount	of specimens
Samples	Series	Cliker	Dose	Compressive strength	Elasticity modulus
	СРо - 0	100	0	12	9
	CPd - 2.5	97.5	2.5	12	9
	CPd - 5.0	95.0	5.0	12	9
Dregs	CPd - 7.5	92.5	7.5	12	9
	CPd - 10.0	90.0	10.0	12	9
	CPd - 15.0	85.0	15.0	12	9
	CPg - 2.5	97.5	2.5	12	9
	CPg - 5.0	95.0	5.0	12	9
Grits	CPg - 7.5	92.5	7.5	12	9
	CPg - 10.0	90.0	10.0	12	9
	CPg - 15.0	85.0	15.0	12	9
		Total		132	99 🖌 🦯

Dosage materials for experimental clinker

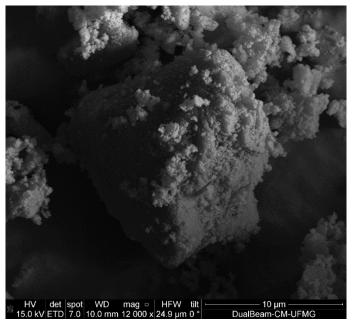
MATERIAL AND METHODS

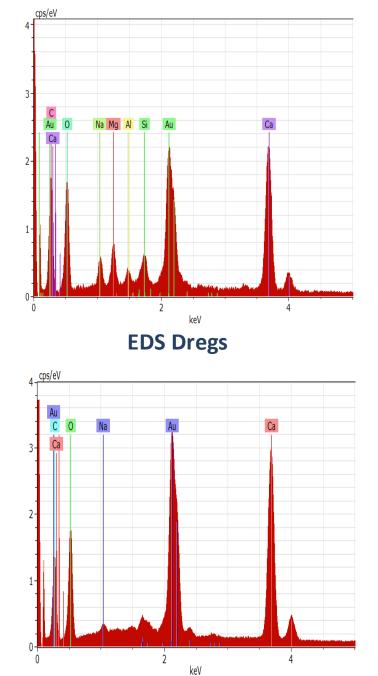
For each dose, four specimens were tested in each age (3, 7 and 28 days). The elasticity modulus test was carried out only in the last three specimens.

The used universal testing machine was a EMIC, model DL600KN compressive strength and elasticity modulus



RESULTS AND DISCUSSION


			/			U	<u> </u>				
	CaO	SiO ₂	AI_2O_3	Fe ₂ O ₃	SO ₃	MgO	K ₂ O	Na ₂ O	TiO ₂	Cl	Others
Clinker (%)	64.55	20.65	3.02	3.23	1.00	0.33	1.47	1.71	0.27	0.07	3.72
Dregs (%)	68.85	6.67	0.74	3.27	6.44	3.14	0.91	3.64	0.18	0.39	5.78
Grits (%)	83.36	5.21	0.29	1.16	0.97	0.66	0.50	2.77	0.08	0.27	4.73

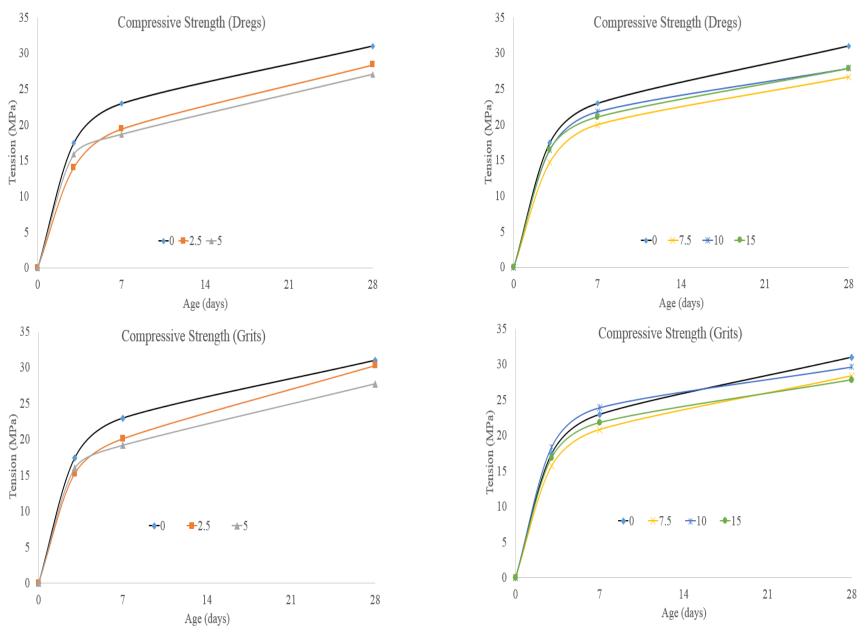

EDX of clinker, dregs and grits

SEM Dregs

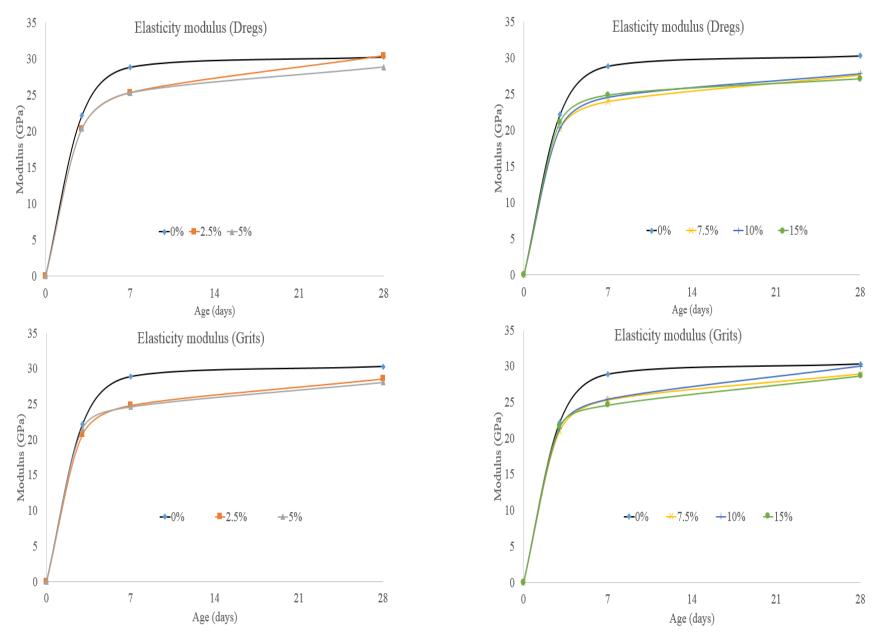
EDS Grits

SEM Grits

Results of material characterization tests


Tests		Normal Consistency	Setting Tin	nes (h:min)	Soundness by the Le Chatelier (mm)	
		(A(%))	Stard	End	Hot	Cold
Clinker		30.88	1:45	2:40	0	0.27
2 5 9/	Dregs		1:55	2:47	0 <	0
2.5%	Grits	- /	1:15	2:15	0	0
5.0%	Dregs		1:20	2:25	0	0
	Grits		1:30	2:45	0	0
7.5%	Dregs		1:11	2:43	0	0
	Grits	<u>}</u>	1:40	3:26	0	0
10.0%	Dregs	$ \rightarrow \rangle$	1:16	2:37	0	0
	Grits		1:24	2:56	0	0
15.0%	Dregs		0:32	3:10	0	0
	Grits		0:55	2:42	0	0
Limits			≥1h	≤ 10hs	≤ 5	<u>≤5</u>

2007 - 2017


> Years 2007 - 2017

TestsSpecific mass (g/cm³)Specific Area (m²/kg)Fineness (%)Pozzo (mS/ 0.26Clinker3.002460.260.26	
Clinker 3.00 246 0.26 0.9	'cm)
	98
Dregs 2.44 1031 0.78 0.8	37
Grits 2.67 972 95.20 0.3	31
Dregs 2.94 282 0.22	-()
2.5% Grits 3.05 325 1.28	
Dregs 2.99 315 0.28	-W
5.0% Grits 3.01 306 2.46	
Dregs 2.93 307 1.00	- \
7.5% Grits 2.99 301 5.36	-
Dregs 2.87 335 0.54	- /
10.0% Grits 3.00 361 2.72	
Dregs 2.98 404 0.44	-/
15.0% Grits 2.95 352 3.96	-
Limits ≥ 245 ≤ 12	- 17

The results of the **COMPRESSIVE STRENGTH TESTS** on four of the percentages **Dregs and Grits** 3, 7 and 28 days of age

The results of the **ELASTICITY MODULUS TESTS** on four of the percentages **Dregs and Grits** 3, 7 and 28 days of age

The physical-chemical characterization of dregs and grits showed a great potential to use these materials for incorporation into the clinker Portland cement production

The different incorporation of dregs and grits (2.5; 5.0; 7.5 and 10%) to the clinker proved viable for ordinary Portland cement production with addition (CP I-S) and Portland composite cement (CP II-F)

The incorporation of both materials to clinker fulfilled the minimum limits for the compressive strength test and modulus of elasticity established by the Brazilian standard

Grits showed, in general, better results than Dregs

REFERENCES

BRAZILIAN ASSOCIATION OF TECHNICAL NORMS. NBR NM 23: Determination of density. 1 ed. Rio de Janeiro. 2001. 5p. (available only in Portuguese)

_____. NBR 11,578: – Portland composite cement – Specification. 1 ed. Rio de Janeiro. 1991 Erratum 1997. 5p. (available only in Portuguese)

_____. NBR 8,522: – Determination of elasticity modulus by compression. 2 ed. Rio de Janeiro. 2008. 16p. (available only in Portuguese)

KINNARINEN, Teemu et al. Separation, treatment and utilization of inorganic residues of chemical pulp mills. *Journal of Cleaner Production*, v. 133, p. 953-964, 2016

BURUBERRI, Leire H.; SEABRA, M. P.; LABRINCHA, J. A. Preparation of clinker from paper pulp industry wastes. *Journal of Hazardous Materials*, v. 286, p. 252-260, 2015

ACKNOWLEDGEMENTS

The authors thank the dedication of all servers and students DEF (LCP), DEC (LMC) UFV and the UFMG microscopy center for the images

We also acknowledge the CNPq, CAPES, FAPEMIG and Bioforest for the support provided to this investigation

Academic Work