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A B S T R A C T

Emergy analysis is one of the ecological thermodynamics methods. With a specific set of indicators, it is proved
to be highly informative for sustainability assessment of national/regional economies. However, a large amount
of data needed for its calculation are from official statistical data by administrative divisions. The spatialization
of emergy in early researches were limited to the administrative boundaries. The emergy inside an adminis-
trative boundary renders a single value, which hides plenty of information for more precise regional planning.

This study develops a new methodology for mapping the spatial distribution of emergy density of a region.
The renewable resource distribution can be mapped based on latest geospatial datasets and GIS technology,
instead of solely relying on statistics and yearbooks data. Besides, a new spatialization method of non-renewable
emergy based on DMSP-OLS nighttime lights data is proposed. Combined with the radiation calibration data, the
problem of light saturation of DMSP-OLS nighttime lights data was solved to improve the emergy spatial detail of
city centers. With a case study of Jing-Jin-Ji region, results showed that this method could generate a high-
resolution map of emergy use, and depict human disturbance to the environment in a more precise manner. This
may provide supportive information for more precise land use planning, strategic layout and policy regulation,
and is helpful for regional sustainable development.

1. Introduction

1.1. Emergy analysis and its major difficulties in spatialization

Urban socio-economic systems have complex impacts on the en-
vironment. The formation and development of the city is based on the
support by the surrounding natural environment. In regional planning
and territorial management, we should not separate the urban areas
from the surrounding natural areas. Instead, we should treat urban
socio-economic and ecological systems as a whole (Huang, 1998).
Emergy is a concept that can express the energy from the local and the
offsite environment that supports it existence and development in terms
of solar energy equivalents. It was proposed by H.T. Odum, based on

the principles of thermodynamics and system ecology theory. It ex-
presses the “solar equivalent energy” embodied in a product or a ser-
vice, or the sum of direct and indirect inputs of all kinds of energy
needed to generate a product or a service (Odum, 1971, 1988, 1996).
Emergy of a nation/region takes into account all the renewable inputs
(such as sunlight, wind, rain, geothermal heat) as well as the non-re-
newable inputs (such as fossil energy and mineral resources) of that
nation/region. It establishes a unified dimension from an energy per-
spective, and allows combining the study of ecosystem and economic
systems. From this point of view, emergy analysis has the advantage of
being very informative in regional system study and planning, and has
been widely used in regional scale (Fang and Ren, 2017; Li et al., 2014;
Su et al., 2013).
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By using emergy analysis, we can calculate the national/regional
“solar equivalent energy” flow and obtain a series of indicators that
reflect the ecological and economic characteristics of the system and
evaluate its sustainable development capabilities. With the help of
Geographic Information Systems (GIS) tools, by visualizing emergy and
emergy-based indicators in space, policymakers can intuitively review
the comparison and correlation between different areas, facilitate the
adjustment of policies based on the characteristics of different regions,
and promote the coordination and sustainable development within and
between regions. Due to the data sources used for traditional emergy
analysis are statistical data and yearbook data, most of the studies on
the spatialization of emergy are based on administrative boundaries.
For example, Sweeney Sweeney et al. (2007), developed a global na-
tional emergy accounting database (NEAD) and produced emergy dis-
tribution maps of major countries in the world. Pulselli et al. (2007)
conducted an emergy zonal analysis for the Cagliari province (Italy); Li
et al. (2014) and Yu et al. (2016) conducted an emergy analysis for 30
provinces in China and the Pearl River Delta region, respectively,
comparing emergy indices at the provincial scale. However, by tradi-
tional mapping method, the emergy values are homogeneous in the
same administrative region and the true emergy distribution in a re-
gional scale are hidden. Pulselli (2010) pointed out that most of the
studies that combined emergy analysis and geographic information
systems were based on the boundaries of administrative regions. Within
an administrative region, it is difficult to allocate emergy data at a high
resolution. With the existing statistical data, the aggregation and dis-
persion of emergy in a region is difficult to understand and map, and
thus emergy analysis becomes less informative as requirements of re-
gional regulation and planning become more and more accurate.
Emergy researchers have been increasingly aware of the importance of
making more elaborate emergy distribution maps and have made many
efforts. For example, Huang et al. (2001) applied the emergy calcula-
tion results of 1178 administrative districts in Taipei metropolitan re-
gion to the analysis of regional emergy spatial zoning map, which
shows that the Taipei Basin has an energy spatial structure composed of
six homogenous zones: mixed-use urban core, high density urban re-
sidential district, service and manufacturing urban district, agricultural
district, newly developed suburban district, and natural area. Huang
et al. (2018) used a variety of data downscale methods in the Beijing-
Tianjin-Hebei urban agglomeration under the condition of data scarcity
of city-level, and conducted spatialization of emergy according to the
city boundary. Although the divisional scale is getting more and more
detailed, it was still limited to the administrative boundaries.

With the progress of global ground monitoring, remote sensing
technology, internet-based big data sharing and GIS technology, the
method of spatialization of renewable emergy has gradually matured
(Arbault et al., 2014; Lee and Brown, 2018; Mellino et al., 2014).
However, for non-renewable emergy, producing a distribution map is
still difficult because of the level of aggregation of the data. For ex-
ample, data such as imports and exports, industrial production, etc., are
usually obtained from the statistical data of administrative units. As a
matter of fact, the non-renewable emergy for urban areas is quite vital
because if accounts for most of the total emergy for cities since in-
dustrialization. The growth of cities’ total emergy mainly depends on
imported goods and services (Huang, 1998), and emergy inputs con-
verge in the cities among a region. So a more precise non-renewable
emergy spatial distribution for urban areas is quite worthy of study.

In previous studies, some researchers explored alternative methods
to present the distribution of non-renewable emergy more precisely.
Pulselli (2010) allocated statistical data of four provinces in the
Abruzzo region of Italy to 315 cities based on population, area, or
number of employees in each manufacturing department, and then used
GIS's interpolation algorithm to generate non-administrative emergy
distribution map with higher resolution. Huang et al. (2007) con-
structed energy flow models for different types of land use, and mapped
the spatial heterogeneity of urban energy in the Taipei metropolitan

region in 1 km×1 km grids. Mellino et al. (2015) used transport sys-
tems and building distribution maps to map human-made capital in an
attempt to represent the distribution of non-renewables. However,
roads and buildings can only represent the emergy in storages of
human-made capital, which do not reflect the flows of emergy.

1.2. Nighttime lights data provide the possibility of emergy spatialization

Under the condition that spatially distributed statistical data is
difficult to obtain, researchers have found a strong correlation between
regional nighttime lights data and non-renewable empower, which in-
dicates that nighttime lights data may become a proxy measure for
mapping the region's non-renewable emergy distribution map at a
higher resolution (Coscieme et al., 2014; Mellino et al., 2013).

Nighttime lights data provides information about a complex, ther-
modynamics-based, aggregate measure of human activity. It has been
widely used since they have been made available to the public. For
example, nighttime lights data have been used to sketch city boundaries
(Imhoff et al., 1997; Shi et al., 2014a). Many studies have shown that
the lit area or brightness of lights is highly correlated with population
density, GDP, energy consumption, carbon emissions, etc. (Doll et al.,
2000; Elvidge et al., 1997a, 2001; Shi et al., 2014b).

Nighttime lights data can be used as an alternative estimation
method for data that are hard to collect by the statistics department. For
example, using nighttime lights data combined with statistical data
such as GDP, energy consumption, etc. Chen (2015) estimated some
social indicators such as infant mortality and poverty rates in some less-
developed areas where the statistical census data is limited. When
natural disasters occur, such as hurricanes, fires, earthquakes, or re-
gional armed conflicts, it is difficult to obtain data on the ground.
However, using nighttime lights satellites, power outages, electric
power generation and transmission can be easily detected, and the
impact of natural disasters, regional armed conflicts, etc. can be as-
sessed (Coscieme et al., 2016; Elvidge et al., 1996).

Besides, it is possible to spatialize the statistical data that are dif-
ficult to spatialize otherwise at a higher resolution by using the corre-
lation between nighttime lights data and socio-economic indicators. For
example, nighttime lights data has been used to map economic activity
intensity (Ghosh et al., 2010), carbon emission intensity (Rayner et al.,
2010), spatial distribution of population (Doll, 2008; Sutton, 1997),
electricity consumption (Townsend and Bruce, 2010), global poverty
(Elvidge et al., 2009), impervious surface (Elvidge et al., 2007b), food
demands (Matsumura et al., 2009), and steel usage in urban construc-
tion (Hsu et al., 2013), etc.

The two most widely used series of nighttime lights data are the
DMSP-OLS dataset (available from 1992 to 2013), and the VIIRS dataset
(available from October 2011 till now).

The US Air Force’s Defense Meteorological Satellite Program
(DMSP) Operational Linescan System (OLS) was originally designed for
observing moonlit clouds (to collect meteorological information for US
Air Force). Due to its high photoelectric amplification effect (gain ef-
fect), in addition to detecting clouds, it can detect low lights emitted by
cities, gas flares, fires, even small-scale residential areas, traffic pat-
terns, and fishing boats, which can be used as an indicator of human
activity (Elvidge et al., 1997b; Elvidge et al., 2001). The satellites of the
DMSP-OLS are sun-synchronous and circle the Earth 14 times a day. For
night observations in various places, it usually passes through the sky
from 20:30 to 21:30 at local time. The radiances in each cell of the light
image is assigned a Digital Number (DN) value from 0 (meaning no
light), to 63 (meaning the saturated light value), which means that the
DNs found in the OLS data are relative values and not absolute light
radiances.

In 1992, the National Geophysical Data Center (NGDC) of the
National Oceanic and Atmospheric Administration (NOAA) established
an electronic archive of DMSP-OLS data (Elvidge et al., 1999). Since
then, it provided DMSP-OLS yearly nighttime lights data (from 1992 to
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2013). The latest Version (V4) DMSP-OLS nighttime lights data can be
downloaded from the NOAA-NGDC website (https://ngdc.noaa.gov/
eog/dmsp.html). These data have a resolution of 30 arc-seconds,
spanning from −180° to 180° longitude and −65° to 75° latitude, ba-
sically covering all human-inhabited regions on Earth (Bennett and
Smith, 2017). The impacts of sunlight, moonlight, glares, clouds, and
aurora have been screened out to enhance the quality of the data. The
website provides nighttime lights data in four categories: cloud free
coverage data, raw average data without noise removal, noise-removed
stable light data, and average lights times percent frequency data.
Among them, noise-removed stable light data are widely used as ver-
ifications or supplements of socio-economic statistical data (such as
power consumption and GDP) (Amaral et al., 2005; Chand et al., 2009;
Doll et al., 2000; Elvidge et al., 2001; Raupach et al., 2010). Fig. 1
shows the 2012 DMSP-OLS global stable light image obtained from the
website. However, light saturation phenomenon is one of the main
limitations of DMSP-OLS data. Due to the high gain settings and the
limited range of detected radiation of the sensor, the DN value of OLS
data usually appears saturated (DN=63) in bright urban areas (Hsu
et al., 2015). Study has shown that more than one-third of the urban
areas in the United States present saturation values (Xie et al., 2014).
The phenomenon of saturated lights makes some features of the central
area of the city are not fully reflected, thus it reduces the availability of
the data to present social and economic activities, and restricts the
applicability of using light data for urban research (Elvidge et al.,
2007a; Li et al., 2013).

The new generation Suomi NPP (VIIRS) nighttime lights data, with
finer resolution and wider detection dynamic range, shows a stronger
correlation with human activity indicators at more local scales (Elvidge
et al., 2013). However, VIIRS is not superior to OLS in all aspects. For
example, it can detect wavelengths in the range of 505–890 nm but
does not include LED light below 500 nm. As some cities begin to switch
from high-pressure sodium to more energy-efficient LED lighting, VIIRS
will erroneously detect a reduction in light radiation (Falchi et al.,
2016), while the wavelength range that OLS can detect is slightly wider
(0.4 μm to 1.1 μm), and more LED lights can be detected. In addition,
VIIRS observes the Earth’s surface at about 1:30 a.m. local time
(Bennett and Smith, 2017). At this time, human activities that use ar-
tificial lighting are generally fewer than what observed at 20:30 to
21:30. Therefore, we consider that OLS data is more suitable than VIIRS
data for mapping regional emergy, since it has more abundant lighting
information, and can depict human activities (such as energy con-
sumption) more comprehensively.

Researchers have pointed out that the nighttime lights data is a
reliable means to obtain the distribution of non-renewable emergy of a
region (Coscieme et al., 2014; Mellino et al., 2013). However, they did
not calibrate the urban lights in order to avoid the effect of saturation.
Without correction, this may lead to loss of information of the emergy
spatial distribution in light saturated areas.

This paper aims at enhancing the applicability of DMSP-OLS
nighttime lights data for mapping non-renewable emergy for a region
by applying a saturation correction method. Along with a direct GIS-
based mapping method of renewable emergy, a methodological fra-
mework of emergy spatialization for a region is proposed. This method
will provide a thermodynamics-based, metabolic geography of terri-
torial systems and inform regional planning for sustainable develop-
ment.

2. Material and methods

2.1. Case study area

In this paper, Jing-Jin-Ji region, also known as Beijing-Tianjin-
Hebei, is selected as a research case to practice the method of regional
emergy spatialization. Jing-Jin-Ji region belongs to the warm-tempe-
rate monsoon climate zone, which is located in the northern area of the

North China Plain. It is surrounded by the Taihang Mountains and the
Yanshan Mountains in the west and the north, and the coast of Bohai
sea in the east, including two provincial cities Beijing and Tianjin, and
11 prefecture-level cities in Hebei province: Baoding, Cangzhou,
Chengde, Handan, Hengshui, Langfang, Qinhuangdao, Shijiazhuang,
Tangshan, Xingtai and Zhangjiakou. It covers an area of approximately
216,000 km2, with a population of about 110 million. In 2012, the re-
gional GDP was approximately 5.76 trillion yuan (Huang et al., 2018).

Jing-Jin-Ji region is not only one of the largest and most developed
areas in northern China, but also the strategic platform for China’s
economic growth, transformation and upgrading, and participation in
global cooperation and competition in the new era. Since the reform
and opening up, the Beijing-Tianjin-Hebei region has achieved re-
markable achievements in the areas of economic development, social
security, and transport infrastructure. But it also faces low levels of
regional integration, lack of a regional organization of the labor system,
and severe environmental problems. On the one hand, ecological vul-
nerability is prominent, and environmental issues have evolved from
urban to regional ones. On the other hand, the development of urban
systems has been unbalanced. Two big cities, Beijing and Tianjin, are
the most developed, but the urbanization of secondary central cities has
been slower. It can be seen from the land use map of the Jing-Jin-Ji
region for 2012 (Fig. 2) that the residential and constructive areas in
Beijing and Tianjin are larger, and the 11 prefectural cities in Hebei
Province are smaller, where the main type of land use is cultivated land,
forestland, and grassland. Breaking up the administrative divisions and
studying the entire region as a whole, rather than each administrative
unit, have been caught more and more attention1 .

2.2. The emergy spatialization framework

This study establishes a framework to spatialize emergy of a given
region (Fig. 3). The spatialization procedure is divided into two parts,
the renewable part and the non-renewable part. Geospatial data pro-
vide data sources for the spatial distribution of regional environmental
renewable resources, and geographic information systems (GIS) provide
tools to calculate the corresponding emergy. Nighttime lights data are
used to assign the non-renewable emergy spatially into each prefectural
city. Beforehand, saturation correction method was applied to mitigate
the light saturation phenomenon in city centers of DMSP-OLS data.

2.2.1. Data preparation
The available data are as follows. Non-renewable emergy data of the

13 cities in the study area for 2012 are acquired from the literature,
which was calculated from statistical data (Huang et al., 2018). The
geospatial datasets (renewable resources, nighttime lights datasets, and
land use map) used in this study are listed in Table 1. The distribution
of surface average solar radiance for Jing-Jin-Ji region was drawn by
Zheng et al. (2012), which was based on the ground-based solar ra-
diation observation data from 1998 to 2005. Davies (2013) developed a

Fig. 1. The DMSP-OLS global stable light image for 2012 (adapted from
https://ngdc.noaa.gov/eog/; last accessed July 2018).

1 Here should be an announcement that the “city” here indicates the ad-
ministrative unit of the government. In China, the government names the entire
area within the administrative boundary “city”, including urban areas, rural
areas and natural areas.

X. Wang et al. Ecological Modelling 397 (2019) 1–15

3

https://ngdc.noaa.gov/eog/dmsp.html
https://ngdc.noaa.gov/eog/dmsp.html
https://ngdc.noaa.gov/eog/


global geothermal heat map based on 38,374 global heat flow mea-
surement points around the world. Wind speed map is from the NASA’s
POWER (Prediction of Worldwide Energy Resources) Project Data Sets,
which provides long-term average global wind speed at 50m on a 0.5
arc degree resolution. Climatologies at High Resolution for the Earth’s
Land Surface Areas (CHELSA) dataset provides global raster data for
monthly average precipitation from January 1979 to December 2013
with a resolution of 30 arc seconds. The CGIAR-CSI Global High-Re-
solution Soil-Water Balance dataset provides hydrological raster data
describing actual evapotranspiration (AET) and soil water deficit with
resolution of 30 arc seconds. The mean annual AET from 1950 to 2000
in this dataset is used in this study. The digital elevation coverage is
from Jonathan de Ferranti, who developed and uploaded the whole
world’s digital elevation coverage maps at 3 and 15 arc second re-
solutions. DMSP-OLS stable lights data for 2012 and the radiance ca-
librated data for 2010–2011 can be downloaded at NOAA-NGDC
websites. Land use data of Jing-Jin-Ji region of the year 2012 is from
Resource and Environment Data Cloud Platform of Chinese Academy of
Sciences (CAS).

All the spatial data are projected to the WGS_1984_UTM_Zone_50 N
coordinates system. All the raster data are uniformed into 30 arc sec-
onds (˜700m at the latitude of the study area; data with higher re-
solution are resampled, and data with lower resolution are re-gridded)
for the convenience of calculation. The annual areal empower density is
expressed in sej m−2 yr−1.

2.2.2. Spatialization of renewable emergy
Renewable resources are the part of the natural support that flows

into the regional system. Generally, the renewable inputs of a region
include the tripartite (solar, tidal and geothermal), secondary and ter-
tiary inputs (wind, rain chemical potential, runoff chemical potential
and runoff geopotential). For a regional area which contains few orFig. 2. Land use map of the Jing-Jin-Ji region for 2012.

Fig. 3. Procedure used for emergy spatialization.
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none coastal areas, tidal energy and runoff chemical potential energy
can be excluded. After the spatial data of every renewable resource was
prepared, the ArcGIS tool “Map Algebra”, was used to calculate the
available energy of each resource flowing into the system according to
the energy calculation equations as follows. Then, the transformities
(i.e. the conversion factors that account for the equivalent solar energy
embodied in one unit of a product or service) were used to calculate
emergy (Table 2), and the total renewable emergy of the system was
calculated according to the rules of the emergy algebra.

2.2.2.1. Available energy (exergy) calculation method
2.2.2.1.1. Solar exergy. Using ground-based solar observation data,

the solar radiation energy per unit area of the input system can be
calculated according to Eq. (1);

= × ×E I A K(J/m yr) (J/m yr) (1 )solar
2 2 (1)

where I is the observed solar radiation per unit area, A is the albedo
(30%; Brown and Ulgiati (2016)), and K is the Carnot efficiency (0.93;
Brown and Ulgiati (2016)).

2.2.2.1.2. Geothermal exergy. The surface heat flow energy
distribution map is presented by Davies (2013) and an average
Carnot efficiency of 69% (based on a weighted average of Carnot
efficiencies for crustal, mantel and core sources) was used to converted
to exergy (Lee and Brown, 2018).

2.2.2.1.3. Wind energy. The energy of the wind absorbed by the
surface of each square meter is calculated by Eqs. (2) and (3) (Brown
and Ulgiati, 2016);

=V V H H( / )ref ref (2)

where V is the geostrophic wind speed, Vref is the wind speed at the
reference wind height, Href is the reference wind height (i.e.50m), H is
the geostrophic wind height (i.e.1000m), and α is the surface
roughness exponent (i.e. 0.25 for land surfaces; Manwell et al. (2010)).

=E K V T1/2wind GN
3 (3)

Regarding Eq. (3), is the air density ≈ 1.23 kg/m3,
KGN is the geostrophic drag coefficient (i.e. 0.00164; Garratt

(1992)), T =31,536,000 s/yr (i.e. 31536000 s per year).
2.2.2.1.4. Rain (chemical potential) energy. In the mainland, the

energy produced by rain is composed by two main elements: the
energy generated by evapotranspiration (chemical) and the energy of
runoff (physical). The chemical potential energy of water that is used by
terrestrial vegetation within each cell is the water that is
evapotranspired (Lee and Brown, 2018; Mellino et al., 2014).

The evapotranspiration energy can be obtained by multiplying the
mass of rainwater evaporating in the area by the Gibbs free energy of
rainwater (Eq. (4)), and the emergy distribution map of rain (chemical
potential) is produced by multiplying the evapotranspiration chemical
potential energy and its transformity;

=E mGchem (4)

where Echem is the chemical potential energy in each cell of the raster
data (i.e. the image), m is the mass of evapotranspired water from each
cell, and G is the Gibbs free energy of rain (i.e. 4.723 J/g).

2.2.2.1.5. Runoff geopotential energy. Runoff can be calculated by
the water budget equation;

=R P E I (5)

where R accounts for the runoff, P for the precipitation, E for the
evapotranspiration, and I for the infiltration.

In this study, it will be partially simplified that the infiltration is
part of the runoff, so R=P-E, and the runoff map is generated by
mapping the difference between precipitation data and evapo-
transpiration data.

Eq. (6) is used to obtain the geopotential energy of runoff;

=E mghgeopotential (6)

where Egeopotential is the geopotential energy of runoff in each cell of the
raster data, m is the mass of runoff in each cell, g is the acceleration due
to gravity (9.8m/s2) and h is the average altitude in each cell.

2.2.2.2. Renewable emergy maps. The emergy map of each renewable
resource is obtained by multiplying its energy with its transformity. The
renewable empower distribution map of the study area was generated
by taking the maximum value between the sum of the solar, tidal and
geothermal inputs and the largest of the secondary and tertiary inputs
(wind, rain, runoff) for each cell, according to the algorithm developed
by Brown and Ulgiati (2016), which can be expressed by Eq. (7). “Cell
Statistics” tool in ArcGIS was used to extract the maximum value for
each cell of the raster data.

=Renewable MAX SUM Solar Geothermal Tide MAX Wind Rain Runoff[ ( , , ), ( , , )] (7)

2.2.3. Saturation correction method of DMSP-OLS data
Elvidge et al. (1999) firstly proposed a method of radiance cali-

bration to correct the saturation of DMSP-OLS image. At high gain
settings, the DMSP-OLS sensor can detect low lights, while urban cen-
ters are saturated. Turning the gain setting down can reduce the de-
tected radiance. Therefore, different ranges of radiation could be ob-
tained by setting different fixed-gains (15 dB, 35 dB, and 55 dB), and

Table 1
Data sources for spatial datasets.

Data Resolution Source Website

Solar — Zheng et al. (2012) —
Geothermal 2° Davies (2013) http://onlinelibrary.wiley.com/doi/10.1002/ggge.20271/abstract
Wind speed 0.5° NASA-POWER Project Data Sets https://power.larc.nasa.gov/
Precipitation 30’’ CHELSA http://chelsa-climate.org/downloads/
AET 30’’ CGIAR-CSI http://www.cgiar-csi.org/data/global-high-resolution-soil-water-balance#

disclaimers
DEM 15’’ Developed and uploaded by Jonathan de

Ferranti
http://viewfinderpanoramas.org/dem3.html

DMSP-OLS stable lights data 30’’ NOAA-NGDC https://ngdc.noaa.gov/eog/dmsp.html
DMSP-OLS radiance calibrated data 30’’ NOAA-NGDC https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
Land use data — Resource and Environment Data Cloud Platform

of CAS
www.resdc.cn

Table 2
Transformities used in this study.

Item Transformity (sej/J) Reference

Solar 1 Odum (1996)
Geothermal 4900 Brown and Ulgiati (2016)
Wind 680 Lee and Brown (2018)
Rain, chemical potential 10000 Lee and Brown (2018)
AET, chemical potential 10000 Lee and Brown (2018)
Runoff, geopotential energy 10000 Lee and Brown (2018)
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then different fixed-gain images were merged to generate a light image
without saturation. This method directly adjusts the gain of the sensor
and can resolve light saturation of the sensor from the source. It has also
been continuously used and improved. Ziskin et al. (2010) improved
the weighting method for different fixed-gain images’ synthesis and
made the splice of images more continuous and smooth, and produced
the global radiation calibration light image for 2006. Hsu et al. (2015)

presented an improved methodological framework for producing cali-
brated light images, which use the stable lights image as a supplement
to the final radiation calibration image, to make up for the detection of
some low lights may be missing since the quantity of images at fixed-
gain settings is limited. A total of eight global datasets have been pro-
duced, representing years from 1996 to 2011 (Table 3; available at:
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html; last accessed
on July 2018). But the gain setting approach is time and cost con-
suming, this method is unlikely to be used to correct the entire his-
torical nighttime lights archive (Elvidge et al., 1999).

In order to compensate for the discontinuity of the radiation cali-
bration product, researchers have proposed various methods for cali-
brating the saturation of DMSP-OLS nighttime light images in other
ways. Hara et al. (2004) and Letu et al. (2010) applied linear regression
model and cubic regression model respectively, which assumed that the
DN value of the light increases linearly or cubically when approaching
the light saturated center of the city. It was found that the correlation
between the calibrated light data and the urban power consumption in
several cities in Japan increased from R2=0.6876 to R2=0.725 and to
R2=0.8264 respectively. These methods assumed that the changes of
lights in city centers followed certain mathematical models, which may

Table 3
Eight global datasets from Global Radiance Calibrated Nighttime Lights
Product.

Satellite name (Fxx; Fxx-Fyy
for multiple satellites)

Earliest date and latest date of fixed-gain data
that was used(yyyymmdd-yyyymmdd)

F16 20100111-20110731
F16 20100111-20101209
F16 20051128-20061224
F14 20040118-20041216
F14-F15 20021230-20031127
F12-F15 20000103-20001229
F12 19990119-19991211
F12 19960316-19970212

Fig. 4. The flowchart of stable lights correction method used in this study (after Letu et al., 2012).
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cause that the light changes in the saturated areas are too idealistic on a
micro level and were not widely used.

Lu et al. (2008) and Zhang et al. (2013) combined the Normalized
Difference Vegetation Index (NDVI) from MODIS images and proposed
HIS and VANUI methods respectively. They found correlations between
urbanization level and vegetation health and abundance. Raupach et al.
(2010) used population density to mitigate the saturation problem of
nighttime light images around the world. After their correction, the
correlations between the light data and GDP, energy consumption, and
CO2 emissions became stronger than the uncorrected ones. These
methods can be used for correcting long-term time series of nighttime
lights imagery. However, they require other data that describe human
activities as supplements, which do not represent a direct solution to
the problem of saturation. As we are going to study human activities
from nighttime lights data, a direct calibration that does not rely on
further external data is preferable.

Letu et al. (2012) sought to calibrate the saturated stable lights
images using existing series of radiation calibration data (Table 3) with
satisfactory results. They applied a certain mathematical method and
GIS tools to calibrate the saturated pixels of the 1999 stable lights
images by 1996–1997 radiation calibration data. The correlation be-
tween electricity consumption of several cities in Japan and its cali-
brated light data rose to R2=0.9273, higher than by using other
methods in the same study context. This paper applies this saturation
correction method. The latest radiance calibration data is from Hsu
et al. (2015) and the closest radiation calibrated data to 2012 stable
lights data is the data from January 11, 2010 to July 31, 2011 (Table 3).

The flowchart of stable lights correction method is displayed in
Fig. 4. In short, all the unsaturated lights data in 2012 stable lights
image are kept, and the saturated part is replaced by the radiation
calibrated data that after a regressive transformation.

The regressive transformation is used to transform the 2010–2011
radiation calibrated light image in order to minimize the light radiance
difference from 2012 stable lights image. Using the “Sample” tool in
ArcGIS and sampling every paired cell values at same location from the
2010–2011 radiation calibrated light image as well as the 2012 stable
lights image, we discovered that the first saturated stable light
(DN=63) occurred when the radiation calibration light cell’s DN value
was 53.94. DN=53.94 in the 2010–2011 calibrated image could be a
saturation cut-off threshold. In other words, cells at the location of
whose DN values are less than 53.94 in the 2010–2011 calibrated
images are all unsaturated in the 2012 stable lights image. But it doesn’t
mean that cells at the location of whose DN values are higher than
53.94 in the 2010–2011 calibrated image are all saturated in the 2012
stable lights image. It means that the saturation phenomenon starts to
appear in the 2012 stable lights image where the DN values are higher
than 53.94 in the 2010–2011 calibrated image. The reason for this is
the acquisition of stable lights images was based on satellites that could
auto-adjust gain setting, which means that saturation does not occur
immediately when the radiation reaches the detection limit. As the
actual radiation increases, the DN value gradually shifts to the satura-
tion value (Hsu et al., 2015). There are still unsaturated cells in the
2012 stable lights image where the DN values of cells are higher than
53.94 in the 2010–2011 calibrated image. But DN=53.94 is the
threshold that was used to establish the regression model of the stable
lights cell values and radiance calibrated cell values at the same posi-
tions (R2 = 0.88; Fig. 5). Then, the regression equation was used to
transform the radiance calibrated data by using the “Raster Calculator”
tool in ArcGIS.

The “Extract by Attributes” tool was used to extract the light satu-
rated cells (DN=63) from the 2012 stable lights image. Subsequently,
a mask made up of these cells was used to extract the transformed ra-
diance calibrated data at the corresponding position by the “Extract by
mask” tool. The DN values of light saturated cells in stable lights data
were turned into zero by the “Raster Calculator” tool. Finally, the ex-
tracted saturation corrected cells and the stable lights without saturated

cells were overlaid to generate the saturation corrected stable lights
image.

2.2.4. Spatialization of non-renewable emergy
Eq. (8) was used to spatialize the non-renewable emergy of each city

in the study area;

= +y x SOL N I( / )·( )ij ij j j (8)

where j represents a city and i represents a raster cell in the city j ; yij is
the non-renewable emergy of the i th cell in city j ; xij is the saturation
corrected light value of the i th cell in city j ; +N I( )j is the non-re-
newable emergy of city j ; and SOLj is the sum of lights of the saturation
corrected stable lights of city j.

Thus, the non-renewable emergy was distributed to each cell of each
city, and then the grid non-renewable emergy distribution data of each
city in the urban agglomeration were spliced together to generate the
non-renewable emergy distribution map of the urban agglomeration.

2.2.5. Thermodynamic geography indicators
2.2.5.1. Empower density. By summing up the renewable and the non-
renewable empower, total empower distribution map of the study
region can be produced. The values of the raster cells are summed up
with the “Raster Calculator” tool in ArcGIS. The empower density of a
city can be used as a development density parameter which can reflect
the level of urbanization and the wealth of residents (Lee and Braham,
2017). We can also observe the different level of urban development
better by making comparisons between cities. It should be noted that
the boundary of “city” in China include urban areas, rural areas and
natural areas. It may be different in other countries of the world, so we
should pay attention to this issue when making such comparisons. In
this study, the residential and constructive areas of Beijing, Tianjin,
Hebei were extracted as “urban areas” by using land use map. Since the
emergy baselines used in different years of researches can be different,
the emergy data should be unified into a same baseline before
comparison. In this study, the data were all reported to the latest
1.20E+25 sej/yr emergy baseline (Brown et al., 2016).

2.2.5.2. Spatial autocorrelation. The “Spatial Autocorrelation” (Global
Moran's I) tool in ArcGIS measures spatial autocorrelation based on
feature locations and attribute values. Given a set of features and an
associated attribute, the tool evaluates whether the pattern expressed
by the features attributes is clustered, dispersed, or random. The Global
Moran’s I index is generally between −1 and 1. It indicates a clustered
trend when the index value is positive, and the closer to 1 the more
clustered. Negative index value indicates dispersed trend, and the closer
to −1 the more dispersed. The tool calculates the Moran's I index value
and both z-score and p-value to evaluate the significance of the results
(Appendix A). We can quantify the aggregation extent of emergy
spatially by the help of this index (Mitchell, 2005). The raster format
data should be converted into features before using this tool.

2.2.5.3. Landscape development intensity index (LDI). LDI was proposed
by Brown and Vivas (2005) and has been widely used to measure the
gradients of human disturbance in wetlands (Carey et al., 2011; Zhang
et al., 2014a, b). Areas with high levels of human disturbance are
usually characterized by intensive material and energy consumption,
human activities and environmental pollution.

In this paper, LDI index map is generated to see the spatial dis-
tribution characteristics of human disturbance gradients in the study
area. LDI index for each cell of the map can be calculated by Eq. (9);

= ×LDI log U R10 ( / )i i i10 (9)

whereUi refers to the total (renewable plus non-renewable) empower of
the i th cell, and Ri refers to the renewable empower of the i th cell.

The spatial variation coefficient (SVC) of LDI index of a region is the
ratio of its standard deviation to its mean, which can measure the
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dispersion of the distribution of LDI index of a region. Because the
standard deviation of data must always be understood in the context of
the mean of the data, for comparison between data sets with different
means, coefficient of variation is more comparable instead of the
standard deviation. A lower spatial variation coefficient means a more
evenly distributed of human disturbance, whereas a higher spatial
variation coefficient means a more dispersed or unevenly distributed of
human disturbance.

3. Results and discussions

3.1. Nighttime lights saturation correction and the non-renewable empower
map

As a result of saturation correction, the DN range of the nighttime
light imagery was expanded from the previous 0–63 to 0–1808.51
(Fig. 6b). Two night light profiles were created along an axis through

the center of Beijing (Fig. 6), and the DN values of these two profiles are
presented in Fig. 7, evidencing how much more detail can be gained
through saturation correction. It can be seen that before the correction,

Fig. 5. Regression line used for the saturation correction of the 2012 stable lights image. The small dots on the left indicate non-saturated pixels (DN < 53.94); the
big dots on the right indicate saturated pixels (DN > 53.94).

Fig. 6. (a) Stable lights and (b) saturation corrected images of the Jing-Jin-Ji region for the year 2012.

Fig. 7. Profiles of the stable lights data and saturation corrected data.
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the central area of the city showed a saturation value of 63 in a large
range. The dynamic characteristics of this part of the light were re-
vealed after correction, where the maximum corrected DN value is
1432, nearly 23 times higher than the maximum DN value before
correction. It is clear how light saturation correction is a crucial op-
erational step, especially in cities where the saturated pixels occupy a
large proportion of the city area. Saturation correction can greatly en-
rich the understanding and visualization of the thermodynamic spatial
characteristics of urban centers.

3.2. Renewable empower maps

The emergy of renewable resources of the Jing-Jin-Ji region was
spatialized, at a resolution of 30 arc second (Fig. 8). It can be seen that
the renewable emergy in Jing-Jin-Ji region does not present a large
spatial heterogeneity. The driving force of the renewable emergy at
each location can be identified by the spatial analysis tool-Highest Po-
sition in ArcGIS. Under the influence of a typical monsoon climate, wind
and rain are the dominant renewable resources of the region (Fig. 9).
Wind emergy is prominent in the north of Zhangjiakou and Chengde,
and rain (chemical potential) emergy is prominent in most other places
in Jing-Jin-Ji region. Cities can be ranked based on the available re-
newable emergy, its density, and the average density of different land
use types of the Jing-Jin-Jin region can be also ranked (Appendix B). It
can be seen that Chengde and Zhangjiakou rank the top two of total
renewable emergy. The flow of natural emergy in these two cities is
relatively abundant, mainly because of their large land area, since the
average density of renewable empowers of these two cities are not
highly ranked. Although the total renewable emergy of Qinhuangdao is
not highly ranked because of its limited area, it shows high values of
renewable empower density. Langfang and Hengshui are characterized
by the lowest two of renewable emergy. These cities have fewer natural
resource availability and host less healthy environments compared to
other cities in the region. Unused land has the highest renewable em-
power density values, followed by water area, forestland, residential

Fig. 8. Spatial distribution map of renewable emergy in the Jing-Jin-Ji region: (a) solar emergy; (b) wind emergy; (c) geothermal emergy; (d) rain (chemical
potential) emergy; (e) runoff (geopotential) emergy; (f) total renewable emergy.

Fig. 9. Distribution of the main components of renewable emergy in the Jing-
Jin-Ji region.
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and constructive area, and cropland ranks the lowest. These messages
can assist a better energy and land use planning. For example, we can
see the distribution of renewable resources and use them where ap-
propriate; identifying ecosystems that with smaller renewable emergy
might be relatively fragile, so it needs to be carefully protected; to
maximize renewable resource availability, unused land should not be
developed as residential and constructive area, etc.

3.3. Total empower density map

Total empower density map with a resolution of 30 arc second is
shown in Fig. 10. It is almost the same as the non-renewable empower
density map, because compared to non-renewable emergy (˜E+14 sej
m−2 yr−1), the magnitude of renewable emergy (˜E+10 sej m−2 yr−1)

is too small. There is nothing different when summing the renewable
into the non-renewable (so non-renewable empower density map is not
specifically displayed in this paper).

As we can see from Fig. 10, Beijing and Tianjin have the largest and
the most concentrated emergy consumption in Jing-Jin-Ji region, which
indicates that they are the most developed in this region. Beijing has one
large empower concentration area in the city center, spreading outwards
in a star shape; while Tianjin has two relatively independent emergy
concentration areas in the city center and in the Binhai New Area. But we
can also see that the empower density of the two areas of Tianjin is
higher than that of Beijing, and has a tendency of connecting together as
a whole. If it is not controlled, Tianjin has the danger of forming a big
pie-like urban development like Beijing. Other cities in the Hebei pro-
vince have much smaller emergy concentration areas at the city center or
at the coastal area, and the empower density suddenly decreases outward
from the concentration area, which shows that the sizes of the cities in
Hebei province are much smaller and less developed.

Furthermore, we can make comparisons of the empower density
between cities (Table 4). It can be seen that the empower density in the
“urban area” of Tianjin (7.88E+14) is the highest in the Jing-Jin-Ji
region, a little higher than Macau (6.09E+14), but lower than Man-
hattan, New York (2.28E+15) and Harlem, New York (1.78E+15).
The Beijing “urban area” and province, the Tianjin province, and the
Hebei “urban areas”, have lower empower density than Macao, but
larger than Rome (8.11E+ 13) and Taipei (6.76E+ 13). The Hebei
province ranks the lowest (3.83E+ 13) in terms of empower density,
among the cities and areas investigated (Table 4). In the Jing-Jin-Ji
region, the empower densities in all urban areas are much greater than
within the city boundaries. In the Tianjin urban area, the emergy
density is 2.42 times larger than its province. The same ratio is 3.43 in
Beijing and 3.20 in Hebei. These results indicate that the level of ur-
banization and the wealth of residents of Tianjin “urban area” are close
to the cities of developed countries, but there is still lots of room for
improvement. Too much rural areas inside the city boundary in China
have dragged down the total level of urbanization and the wealth of
residents of the city.

3.4. Spatial Autocorrelation of total empower in Jing-Jin-Ji region

The Global Moran’s I index of each city investigated is above 0.85,
which indicates that the total empower of all the cities in the Jing-Jin-Ji
region is very concentrated. Beijing, Tianjin and Qinhuangdao show the
highest concentration (i.e. 0.982850, 0.962132 and 0.937601, respec-
tively; Appendix C). The Global Moran’s I of the entire region (including
the areas of all the provinces) is 0.96, slightly smaller than the value for
Tianjin. This indicates that the total emergy used in Beijing and Tianjin
is not only very concentrated, but also very large. The results are sta-
tistically significant and all the confidence levels are greater than 99%
(Appendix C).

Fig. 10. Total emepower distribution in the Jing-Jin-Ji region for the year
2012.

Table 4
Empower density of cities and provinces in the Jing-Jin-Ji region and other cities from previous studies.

City(region) Year Empower desity sej/m2/yr References

Wall Street, New York From multiple datasets of different years 3.60E+15 Lee and Braham (2017)
Manhattan Island, New York 2.28E+15 Lee and Braham (2017)
Washington Heights, New York 1.94E+15 Lee and Braham (2017)
Harlem, New York 1.78E+15 Lee and Braham (2017)
Urban areas of Tianjin 2012 7.88E+14 This research
Macao 2004 6.09E+14 Lei et al. (2008)
Urban areas of Beijing 2012 3.69E+14 This research
Province of Tianjin 2012 3.25E+14 This research
Urban areas of Hebei 2012 1.22E+14 This research
Province of Beijing 2012 1.08E+14 This research
Rome 2002 8.11E+13 Ascione et al. (2009)
Taipei 1990 6.76E+13 Huang (1998)
Province of Hebei 2012 3.83E+13 This research
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3.5. The human disturbance gradients map

The distribution of the LDI index of the Jing-Jin-Ji region is showed
in Fig. 11. The darker spots indicate higher human disturbance to the
ecosystem.

Table 5 shows the LDI indices for each city in the Jing-Jin-Ji region.
The average LDI of Beijing is the fourth lowest among 13 cities, just
slightly higher than Chengde, Zhangjiakou and Qinhuangdao, and sig-
nificantly lower than its neighbors Tianjin and Langfang, which can be
an evidence that some of the high energy consumed industries have
moved out of Beijing to neighboring cities. Tianjin and Langfang have
the highest average LDI (32.54 and 30.25) and the lowest spatial

variation coefficient (SVC) (31% and 15%), indicating that the human
disturbance of the environment is large, and the area developed and
utilized by humans is large and uniform. Chengde and Zhangjiakou
have the lowest LDI average (3.94 and 6.06) and the highest SVC (257%
and 195%), indicating that human disturbance is relatively small but
uneven, which means that some zones are characterized by high human
disturbance degree in an overall relatively low human disturbance
background.

Table 6 shows the results of the overlay analysis of the LDI map and
the land-use map. Residential and constructive area have the highest
LDI average (30.13) and the lowest SVC (35%), indicating that these
areas have the highest intensity in human disturbance but evenly dis-
tributed energy and resource consumption patterns. Forestland and
Grassland have the lowest LDI averages (4.51 and 6.91) and the highest
SVCs (234% and 183%). This shows that although the overall level of
human disturbances in grassland and forestland is low, there are sig-
nificant differences in the level of disturbances. Some areas have LDI
values as high as 49.35 and 52.52. Cropland and water area also show
high human disturbance levels (LDI averages are 21.57 and 22.29).
Some of the areas where outside residential and constructive areas that
show LDI values almost as high as residential and constructive areas.
On the one hand, it can be explained that some non-residential and
constructive areas are also severely interfered by humans. On the other
hand, it may technically due to the blooming effect of DMSP-OLS light
data. Blooming effect means that the lit areas extend beyond the
source's true illuminated area, mainly because of the limited resolution
and the producing procedure of the imagery (averaging the adjacent
input cells to produce output cell) (Bennett and Smith, 2017). It is not
difficult to understand that the lights of one area do not exactly light
inside the boundary. It definitely will illuminate adjacent areas (include
cropland, grassland, water area, etc.) through the light transmission.
This issue is more pervasive over water and snow areas, as these reflect
nearby lights more than dark ground (Xie et al., 2014). This problem is
quite troublesome when studying cities because it can result in over-
estimation of features such as urban extent (Small and Elvidge, 2013).
However, when we studying the human disturbance in the landscape,
not only do we not think that it is a problem, but we consider that it is a
good indicator that reflects the spatial extent of human disturbance.
Because the human disturbance of the ecosystem is probably not exactly
inside the human settlements boundary as the land use map shows.
Human activities inside the residential and constructive area may affect
the adjacent cropland, water area, grassland and forest. The human
lights that intrude into the adjacent land can reflect the impact of
human activities that penetrated to other land use types.

3.6. Limitations

There are several limitations to this study. Regarding the renewable
emergy, due to the data availability, some spatial data are only long-
term average values, rather than specific values for the resource flow
per year (i.e. geothermal energy, wind speed, solar radiation, and
evapotranspiration). In addition, some of the distribution maps are
obtained by interpolation of monitoring data, and the resolution of
some satellite-based data is fairly low, which may cause some un-
certainties. These limitations will be minimized with the improvement
of monitoring and mapping technology, and then people could retrieve
better datasets. Another limitation is the transformities of renewable
resources used in this study. Transformities of a specific energy flow can
vary based on the processes or location (Lee and Brown, 2018). We used
transformities from latest literature, however, it is well understood that
transformities at the local scale may vary from the global average data.

The main limitation encountered regarding the spatialization of
non-renewable emergy emerged from the saturation correction method.
A linear regression model was applied to modify the 2010–2011 ra-
diance calibration image in order to minimize the differences between
its lights data and the stable lights data in 2012. It is assumed that the

Fig. 11. Distribution of the Landscape Development Index (LDI) in the Jing-Jin-
Ji region.

Table 5
Statistical results of the Landscape Development Index (LDI) of each city in the
Jing-Jin-Ji region.

City Cell count Minimum Maximum Mean Standard
deviation

SVC %

Tianjin 18192 0 56.23 34.81 10.70 31%
Langfang 9643 0 47.35 32.83 5.33 16%
Tangshan 21055 0 51.29 28.73 13.94 49%
Cangzhou 21211 0 47.24 28.27 9.84 35%
Handan 17457 0 50.33 27.83 12.81 46%
Shijiazhuang 20800 0 53.72 25.30 16.82 66%
Xingtai 18188 0 41.47 24.54 12.91 53%
Hengshui 13009 0 44.85 23.82 12.94 54%
Baoding 33263 0 47.53 20.44 16.38 80%
Beijing 24979 0 50.94 20.37 17.71 87%
Qinhuangdao 11953 0 47.30 14.02 16.16 115%
Zhangjiakou 56578 0 44.02 6.14 12.00 195%
Chengde 61166 0 47.17 4.19 10.82 259%
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actual light radiation in the saturated part in stable lights image
changed as the same mode as the unsaturated part between the two
data. However, there is no available data to confirm that the actual
radiation of the saturated lights in the urban centers of the Jing-Jin-Ji
region changes like that mode. Some researchers consider that since
most of the cities in China are still in rapid development, the actual
radiation changes over time in light saturated areas of urban centers
might be unpredictable (Ma et al., 2014). But we are more willing to
believe that it is not significant in one or two years.

4. Conclusions

Emergy is a measure of environmental support from an energy
perspective that goes into the system. It provides a quantitative way of
measuring the global and the local impact on the environment. The
impact of cities goes far beyond its boundary because it must bring
resources from all over the planet to support its development. The
impact globally can be measured by the quantity of emergy necessary to
support it, and the impact of locally can be measured by the LDI.

In this study, we developed a method to spatialize a high-resolution
(30 arc second) emergy distribution map of a region, through which we
can identify the hot spots of emergy use, spatial patterns of emergy
flows, and human disturbance gradients, etc., which can monitor and
map human activities and development, and guide for more accurate
and specific sustainable planning strategy that break through the limits
of administrative boundaries. Based on GIS technologies and environ-
mental geospatial databases, it is feasible to generate maps of the
spatial distribution of renewable emergy. Due to the availability of
statistical data, non-renewable emergy distribution map for a region
usually display in administrative boundary patched way. Nighttime
lights data is an applicable proxy for spatializing non-renewable
emergy, which can further improve the spatial detail of emergy map-
ping. It is noteworthy that the saturation correction for DMSP-OLS data

is crucial, especially in urban areas, in order to study the spatial ther-
modynamics of a region better.

From the case study of Jing-Jin-Ji region, we can conclude that the
empower density and LDI maps of cities for the year 2012 can be evi-
dences of development status and policies implemented in the past. As
municipalities, Beijing and Tianjin were most developed, while cities in
Hebei were far away behind. Before and after 2008 Olympics, in order
to ensure good environment conditions for the Beijing, large numbers of
Beijing's industrial enterprises migrated outward, mainly to areas in
neighboring cities such as Tianjin, Langfang, Tangshan and Cangzhou
(Zhang et al., 2014a, b). At the same time, the upper reaches of Beijing,
areas in Chengde and Zhangjiakou, strictly controlled industrial de-
velopment and protected the environment (Zhang, 2009). Long-term
research will better interpret the changes and transmissions of spatial
thermodynamics of a region, which is one of the future study scopes.
Meanwhile, from the LDI and land use map we found that some areas of
cropland, water area, grassland and forest are suffering acute human
disturbance, which indicates that the real human disturbance can ex-
tend beyond the human settlements area that mapped in land use map.
The blooming effect of DMSP-OLS data may help to measure the real
human disturbance spatial extent, which is also one of the interesting
points for further research.
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Appendix A

Table A1–A3

Table 6
Overlay analysis of the Landscape Development Index (LDI) map and the land-use map.

LUCC ID Land use type Cell count Minimum Maximum Mean Standard deviation SVC %

1 Cropland 151373 0 50.79 23.40 15.10 65%
2 Forestland 69512 0 51.61 4.80 11.37 237%
3 Grassland 51909 0 54.82 7.42 13.68 184%
4 Water area 10187 0 55.86 24.24 15.98 66%
5 Residential and constructive area 40139 0 56.23 32.76 11.38 35%
6 Unused land 2469 0 42.46 13.24 16.29 123%

Table A1
Ranking of total renewable emergy of cities in the Jing-Jin-Ji region.

Rank City Total Renewable emergy(sej/yr)

1 Zhangjiakou 1.80E+21
2 Chengde 1.66E+21
3 Baoding 4.97E+20
4 Cangzhou 4.66E+20
5 Beijing 4.32E+20
6 Tangshan 4.25E+20
7 Tianjin 3.59E+20
8 Handan 3.36E+20
9 Xingtai 3.26E+20
10 Shijiazhuang 2.96E+20
11 Qinhuangdao 2.91E+20
12 Hengshui 2.62E+20
13 Langfang 1.71E+20
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Appendix B

Table B1

Appendix C

Table C1

Table A2
Ranking of average density of renewable empower of cities in the Jing-Jin-Ji region.

Rank City Average density of renewable
empower(sej m−2 yr−1)

Standard Deviation(sej
m−2 yr−1)

1 Zhangjiakou 4.80E+10 1.92E+10
2 Chengde 4.10E+10 1.53E+10
3 Qinhuangdao 3.68E+10 9.23E+09
4 Cangzhou 3.32E+10 3.59E+09
5 Hengshui 3.05E+10 2.65E+09
6 Tangshan 3.05E+10 5.67E+09
7 Tianjin 2.98E+10 5.01E+09
8 Handan 2.90E+10 2.23E+09
9 Xingtai 2.70E+10 3.80E+09
10 Langfang 2.69E+10 3.02E+09
11 Beijing 2.61E+10 5.84E+09
12 Baoding 2.26E+10 4.65E+09
13 Shijiazhuang 2.15E+10 3.29E+09

Table A3
Ranking of average density of renewable empower of different land use types in the Jing-Jin-Ji region.

Rank Land use type Average density of
renewable
empower(sej m−2

yr−1)

Standard
Deviation(sej
m−2 yr−1)

Proportion of
area

1 Unused land 5.38E+10 2.08E+10 0.8%
2 Forestland 3.64E+10 1.38E+10 21.4%
3 Grassland 3.62E+10 1.59E+10 15.9%
4 Cropland 3.28E+10 1.42E+10 46.3%
5 Water area 3.26E+10 1.04E+10 3.3%
6 Residential and

constructive area
2.84E+10 8.44E+09 12.4%

Table B1
Global Moran’s I index confidence levels for z-scores and p-values.

z-score p-value Confidence level

<−1.65 or > +1.65 < 0.10 90%
<−1.96 or > +1.96 < 0.05 95%
<−2.58 or > +2.58 < 0.01 99%

Table C1
Ranking of the Global Moran’s I index of total emergy use in the cities of Jing-Jin-Ji region.

Rank City Global Moran’s I index p-value z-score

1 Beijing 0.982850 < 0.001 189.36
2 Tianjin 0.962132 < 0.001 182.08

Entire region 0.960069 < 0.001 526.24
3 Qinhuangdao 0.937601 < 0.001 91.85
4 Xingtai 0.928995 < 0.001 123.02
5 Baoding 0.927779 < 0.001 152.29
6 Shijiazhuang 0.916810 < 0.001 135.27
7 Zhangjiakou 0.912476 < 0.001 131.18
8 Chengde 0.904396 < 0.001 109.21
9 Tangshan 0.896106 < 0.001 168.93
10 Langfang 0.885826 < 0.001 119.86
11 Hengshui 0.881600 < 0.001 93.73
12 Cangzhou 0.879299 < 0.001 136.00
13 Handan 0.861942 < 0.001 125.27
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